
COP 3223: C Programming (Control Structures – Part 1) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Program Control Structures In C - Part 1

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Control Structures – Part 1) Page 2 © Dr. Mark J. Llewellyn

Control Structures In C

• Normally, statements in a program are executed one

after the other in the order in which they appear in the

code. This is called sequential execution.

• There are various C statements that we will soon see that

enable the programmer to specify that the next statement

to be executed may be other than the next on in

sequence. This is called transfer of control.

• Historically speaking, it has been shown that all

programs can be constructed in terms of only three types

of control structures, namely the sequence structure, the

selection structure, and the repetition structure.

COP 3223: C Programming (Control Structures – Part 1) Page 3 © Dr. Mark J. Llewellyn

Control Structures In C

• C provides three types of selection structures in form

of statements.

1. The if selection statement either performs (i.e., selects) an

action if a condition is true or skips the action if the condition is

false. This is called a single-selection statement because it

selects or ignores a single action.

2. The if…else selection statement performs an action if a

condition is true and performs a different action if the condition

is false. This is called a double-selection statement because it

selects between two different actions.

3. The switch selection statement performs one of many

different actions depending on the value of an expression. This

is called a multiple-selection statement because it selects among

many different actions.

COP 3223: C Programming (Control Structures – Part 1) Page 4 © Dr. Mark J. Llewellyn

Control Structures In C

• C provides three types of repetition structures in form of

statements (we’ll look at these in the next set of notes).

1. The while repetition statement allows an action to be repeated as

long as some condition remains true. This is a “top-tested” repetition

statement, which means that the condition is evaluated before the

action is executed the first time. If the condition is initially false, the

action is not performed even once.

2. The do…while repetition statement allows an action to be repeated

as long as some condition remains true. This is a “bottom-tested”

repetition statement, which means that the condition is not evaluated

until the action is performed the first time. Thus, the action is always

performed at least once with this type of repetition statement.

3. The for repetition statement repeats an action a specific number of

times based upon a counter value (an integer). This repetition

statement is referred to as a “counted loop” statement.

COP 3223: C Programming (Control Structures – Part 1) Page 5 © Dr. Mark J. Llewellyn

Control Structures In C
• So that’s it, C provides you with a total of only seven control

statements: (1) the structure, (3) selection statements, and (3)

repetition statements.

• Each C program is formed by combining as many of each

type of control statement as is appropriate for the algorithm

(the set of operations required to solve the problem at hand)

the program implements.

• As we will see, these control structures are simply executed in

the order they are placed in the program by the programmer.

This is called control-statement stacking and with the added

capability of control-statement nesting (we’ll see this later),

all C programs are constructed using only these control

structures combined in only these two ways.

COP 3223: C Programming (Control Structures – Part 1) Page 6 © Dr. Mark J. Llewellyn

The Sequence Structure

• The sequence structure of a C program is simply the

order in which the various statements in the program

appear.

• While the sequence structure of a program may not seem

like a serious issue, it is in fact!

• Consider the two programs shown on the next page.

These two program differ only in their sequence

structure, however, one of the programs will execute

successfully and print the number the user enters as

input and the other will always print 0.

• Why? {The one on the left works correctly.}

COP 3223: C Programming (Control Structures – Part 1) Page 7 © Dr. Mark J. Llewellyn

// simple program to read and print a single

integer

// January 17, 2009 Written by: Mark

Llewellyn

#include <stdio.h>

//main function

int main()

{

int integer1 = 0; //user entered integer

printf("Enter an integer number\n");

scanf("%d", &integer1);

printf("You entered: %d\n\n", integer1);

system("PAUSE");

return 0;

} //end main function

// simple program to read and print a single

integer

// January 17, 2009 Written by: Mark

Llewellyn

#include <stdio.h>

//main function

int main()

{

int integer1 = 0; //user entered integer

printf("Enter an integer number\n");

printf("You entered: %d\n\n", integer1);

scanf("%d", &integer1);

system("PAUSE");

return 0;

} //end main function

COP 3223: C Programming (Control Structures – Part 1) Page 8 © Dr. Mark J. Llewellyn

The if Selection Statement

• The format of the if selection statement is:

if (condition) {

statements;

}

statement x;

• When the if statement is executed, the condition is

evaluated and if the condition evaluates to true, the

statements in the body of the if statement are executed,

followed by statement x. If the condition evaluates

to false, the next statement to be executed will be

statement x.

These statements are

executed only if the condition

evaluates to true, followed by

statement x.

COP 3223: C Programming (Control Structures – Part 1) Page 9 © Dr. Mark J. Llewellyn

The if Selection Statement

• The program on the following page uses a series of if

statement to determine which grade a student should be

assigned based on their test score which is entered as

input.

GOOD PROGRAMMING PRACTICE:

There are several common indentation styles that can be used with the if
statement. See the style information on the course assignment page for specific
options.

Whichever style you choose, be consistent throughout the source code to
enhance the readability of your code.

COP 3223: C Programming (Control Structures – Part 1) Page 10 © Dr. Mark J. Llewellyn

Sample if statement program

COP 3223: C Programming (Control Structures – Part 1) Page 11 © Dr. Mark J. Llewellyn

The if…else Selection Statement

• The program on the previous page correctly prints the students

letter grade based on the exam score that is input.

• However, the structure of this program is not very efficient from a

processing point of view, because every if statement condition

is evaluated even if the student’s letter grade has already been

determined.

• Consider, for example, a student who scored a 92 on the exam.

Clearly, the first if statement’s (line 14) condition evaluates to

true and the letter grade of A is printed. The next statement to be

executed is the if statement on line 17 and its condition will

evaluate to false. The next statement to be executed is the if

statement on line 20 and its condition will evaluate to false, and so

on. They are all executed!

COP 3223: C Programming (Control Structures – Part 1) Page 12 © Dr. Mark J. Llewellyn

The if…else Selection Statement

• In cases such as this where once a condition is true and

all others will be false, we need a more efficient way for

the program to execute.

• The if…else selection statement is one possibility that

can be used to solve our problem.

• Recall that the if…else statement is a double-selection

statement in that it selects from two actions. The if

statement is a single-selection statement.

COP 3223: C Programming (Control Structures – Part 1) Page 13 © Dr. Mark J. Llewellyn

The if…else Selection Statement

• The if…else selection statement has the following

format:

if (condition) {

statements

}

else {

statements

}

statement x;

These statements are

executed only if the condition

evaluates to true, followed by

statement x.

These statements are

executed only if the condition

evaluates to false followed

by statement x.

COP 3223: C Programming (Control Structures – Part 1) Page 14 © Dr. Mark J. Llewellyn

Sample if…else statement program

COP 3223: C Programming (Control Structures – Part 1) Page 15 © Dr. Mark J. Llewellyn

The if…else Selection Statement

• Now let’s re-write the program on page 10 that determined a

student’s letter grade using if-else statements to make the

execution of the program more efficient.

• In this case notice that the statements that are included in most of

the else clauses are if statements. There is no restriction on the

type of statement that can belong inside these clauses. In fact in

the program on page 10, we could have written the if statement on

line 17 as:

if (testScore >= 80) {

if (testScore < 90) {

printf(“Test grade is a B\n”);

}

}

COP 3223: C Programming (Control Structures – Part 1) Page 16 © Dr. Mark J. Llewellyn

Program from page 10 modified using

if…else statements

COP 3223: C Programming (Control Structures – Part 1) Page 17 © Dr. Mark J. Llewellyn

The if…else Selection Statement

• In contrast to the program on page 10, the program on the

previous page will execute more efficiently.

• Again, consider a student who scores a 92 on the exam. In the

new program using the if…else statement, when the condition

on line 14 is evaluated and it evaluates to true, the printf

statement on line 15 is executed, but the next statement to be

executed is now the printf statement on line 35. No other

conditions are evaluated, making the execution of the new

program more efficient.

COP 3223: C Programming (Control Structures – Part 1) Page 18 © Dr. Mark J. Llewellyn

The if…else Selection Statement

GOOD PROGRAMMING PRACTICE:

As with the if statement, there are several common indentation styles that can
be used with the if…else statement. See the style information on the course
assignment page for specific options.

Whichever style you choose, be consistent throughout the source code to
enhance the readability of your code.

GOOD PROGRAMMING PRACTICE:

The indentation style shown in the sample program on page 16 has certain
disadvantages if (1) there are many nested if statements and/or (2) the
statements in the body of the if or else clauses are fairly long. The problem
is that the indentation becomes quite deep and causes statements to break
across lines which decreases the readability of the program.

If many levels of nesting of if…else statements are used the style shown on
the next page is actually the preferred style.

COP 3223: C Programming (Control Structures – Part 1) Page 19 © Dr. Mark J. Llewellyn

Preferred indentation style using nested

if…else statements

COP 3223: C Programming (Control Structures – Part 1) Page 20 © Dr. Mark J. Llewellyn

GOOD PROGRAMMING PRACTICE:

In selection statements (and also repetition statements that we’ll see in the next
set of notes), if the body of the selection clause is a single statement, e.g., the
sample programs on pages 10, 16, and 19) then the braces are not necessary.

For example:

if (condition)

statement;

and

if (condition) {

statement;

}

are identical as far as the compiler is concerned. The code produced by the
compiler is just as efficient with or without the braces.

You can decide whether or not to use the braces in single statement clauses.
From a program maintainability and modifiability point of view, it is better to
include them from the start. But as with other style considerations, be
consistent in your choice.

However, anytime the clause contains more than one statement, the braces are
required to form a block.

COP 3223: C Programming (Control Structures – Part 1) Page 21 © Dr. Mark J. Llewellyn

The switch Selection Statement

• The switch selection statement (a multiple-selection statement)

is a versatile selection statement that is useful anytime a program

needs to make a series of decisions in which a variable or an

expression is tested separately for each of the constant integral

values it might assume, and different actions are to be taken.

• The format of the switch selection statement is:

switch (expression) {

case labelx : statements;

break;

. . .

case labelz : statements;

break;

default : statements;

break;

} //end switch

COP 3223: C Programming (Control Structures – Part 1) Page 22 © Dr. Mark J. Llewellyn

Details Of The switch Selection Statement

• The expression of a switch selection statement must
evaluate to the type int (integer).

• The case labels match the possible values to which the
expression may evaluate. Each case label must be unique.

• After the expression is evaluated, control is passed to the
appropriate case label (i.e., the one that matches the value of the
expression).

• The case label default, which is optional, will be selected, if
the expression evaluates to a value that does not match any of the
other explicit case labels. There can be at most 1 default label in
any switch statement.

• The C keywords case and default cannot occur outside of a
switch statement in any C program.

COP 3223: C Programming (Control Structures – Part 1) Page 23 © Dr. Mark J. Llewellyn

Details Of The switch Selection Statement

COMMON PROGRAMMING ERROR:

Within a case of a switch statement, the break statement
causes the execution control to pass to the next executable
statement outside of the switch statement.

If the break statement is omitted within a case, the execution
“falls through” to the next executable statement in the succeeding
case.

Deliberately omitting a break statement can be a useful
programming technique in certain cases, it is often simply
overlooked, thus causing statements to be executed that the
programmer did not intend to be executed, thus causing the
program to produce incorrect results.

Missing break statements are NOT caught by the compiler!

Be very careful with break statements inside switch cases in C!

COP 3223: C Programming (Control Structures – Part 1) Page 24 © Dr. Mark J. Llewellyn

An Example Program With A switch Statement

• The following program will ask the user to enter an integer

number between 1 and 12, which will correspond to the months of

the year.

• Using a switch statement the program will print the correct month

of the year.

• The default case will be used as an error trap in this sample

program, which is often the case for how the default case is used.

COP 3223: C Programming (Control Structures – Part 1) Page 25 © Dr. Mark J. Llewellyn

Sample switch statement program

Default

case

COP 3223: C Programming (Control Structures – Part 1) Page 26 © Dr. Mark J. Llewellyn

Notice that the break

statement associated

with case 3 is

“missing”, so execution

of case 3 falls through

to case 4.

COP 3223: C Programming (Control Structures – Part 1) Page 27 © Dr. Mark J. Llewellyn

Combing Cases In A switch Statement

• Sometimes within a switch statement, you want the same

action to occur for more than one case value. You do not need to

copy the code more than once, rather you “combine” the cases by

careful omissions of the break statement.

• The program shown on the next page illustrates this technique.

• This program also shows, that while the programmer may use

some logical ordering to the case values, it makes no difference to

the compiler the order in which the cases appear within the

switch statement. However, from a readability point of view it

is always best to apply some logical ordering to the case values.

Ascending or descending order are the most common.

COP 3223: C Programming (Control Structures – Part 1) Page 28 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Control Structures – Part 1) Page 29 © Dr. Mark J. Llewellyn

Practice Problems
1. Construct a C program that uses a switch statement in the

following manner: ask the user to enter two integer numbers
and then ask them to enter a third number where the third
number is a 1, if they want to add the first two numbers
together, a 2 if they want to multiply the first two numbers, a 3
if they want to subtract the first number from the second
number, and a 4, if they want to divide the first number by the
second number.

COP 3223: C Programming (Control Structures – Part 1) Page 30 © Dr. Mark J. Llewellyn

Practice Problems
2. Construct a C program that uses if statements to determine

which is the smallest and which is the largest of five integer
values entered by the user.

3. Construct a C program that uses if…else statements to
determine which is the smallest and which is the largest of five
integer values entered by the user.

